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ABSTRACT 

The paper presents a theoretical model of binary-alloy solidification where 
gravity acts as the driving force of the convection in the melt and affects chem- 
ical diflirsion as well. The signifi’cande of the model for studying solidification 
processes under different gravity conditions is discussed. A simplified version 
of the model has been used to simulate the solidification of a two-dimesional 
sample of the pseudo-binary mercury-cadmium-telluride alloy. The influence 
of gravity on the chemical diffusion was studied and a series of numerical ex- 
periments was performed which show the effects of the accuracy with which 
the material parameters have been measured. 

INTRODUCTION 

The solidification processes are driven by heat and mass transport. The trans- 
port itself can be due to the conduction of heat and the diffusion of solute 
and, in addition, convection and radiation may be involved. The phenomeno- 
logical models of,processes of this type should contain the balance equations 
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for mass, momentum, and energy, the constitutive relations ‘for generalized 
fluxes, and the equations of state. We restrict ourselves to the constitutive 
relations which follow from the axioms of non-equilibrium thermodynamics 
(VodLk, 1978). Using the hypothesis of local thermodynamic equilibrium we 
express equations of state from the equilibrium phase diagram of the binary 
alloy under consideration. 

We distinguish three phases in the system undergoing solidification: solid, 
liquid, and inter-phase (called mushy-zone by some authors), the last of them 
being understood as a mixture of solid and liquid. There are two main phe- 
nomenological approaches to modelling such a system. First, there is a gen- 
eralization of the classical Stefan problem where the inter-phase is modelled 
as a discontinuity surface (Vod&k, 1982). The other approach formulates the 
balances globally over the whole region occupied by the alloy and treats them 
in a distributional (weak) sense. A useful example of the model of this type 
has been presented by Alexiades, Wilson and Solomon (1985). Our theoretical 
model uses similar approach and, in addition, takes the convective phenomena 
and the influence of gravitational field into account. 

A MODEL OF BINARY-ALLOY SOLIDIFICATION 

Basic assumptions and the balance equations 

We consider a binary alloy consisting of components A and B supposing it to 
be capable of forming solid solutions in all proportions. The alloy is assumed 
to be situated in an exterior gravitational field. The mass transfer due to 
diffusion and heat transfer due to conduction and radiation are taken into 
account in the whole system under consideration. In addition, convective 
heat and mass transfer is supposed to occur in the liquid and the inter-phase. 
We assume that these two phases are quasiincompressible Newtonian fluids. 
Hence, the Boussinesq approximation and the Navier-Stokes law for the stress 
tensor may be applied there. However, since we suppose no convection in the 
solid phase, the Navier-Stokes law may be applied even there formally. 

We further assume that there are no chemical reactions and that the inter- 
active forces between the components of the alloy are negligible. Finally, we 
model the alloy as an isotropic material. 

Theoretical studies of alloys employ the model of a mix.ture usually (Atkin 
and Craine, 1976a, b) and this is our approach as well. The binary alloy in 
a solid phase (S), liquid phase (L), and an inter-phase (I) is then described 
by the respective continua Ek, k = S, L, I, each of which may be viewed as 
a superposition of two one-component continua Et, (Y = A, B. Due to space 
limitations it is impossible to present the derivation of the model here, the 
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interested reader being referred to the paper by Vod&, Cerny and P2ryl 
(1992). We only list some assumptions on which the model is based and 
indicate the main lines of its development. 

We start with formulating the basic conservation laws for the continua in 
question taking no care about the phase change process temporarily. The 
mass balance is written in the form 

div vk = 0, (I) 

pk = p” - pkczk(Tk - 5?) - pkyk(Ck - C;), k = L, S, I, (2) 

where v is velocity, p density, cy and y are expansion coefficients, 2 is 
temperature, C’s concentration of the component B, and the bar denotes 
appropriate reference values. Since the incompressibility of E’ does not imply 
that of Et we write the mass balance equations for the individual components 
of E” as well. We get 

p k dC: dt + div j: = 0, k = L, S, I, 

where C, denotes the concentrations, t is time, j, the diffusion fluxes and 
d /d t denotes the material derivative. 

To obtain the balance of momentum in the liquid phase we use the “weak 
diffusion approximation”, suppose that the pressure gradient is due to the 
weight of the fluid only, apply the Navier-Stokes law and linearize. Assum- 
ing formally that the coefficient of dynamical viscosity of the solid phase is 
infinitely large and supposing that the inter-phase is a fluid whose properties 
are determined by the lever rule from the corresponding properties of the solid 
and liquid phases, we may write the balance of momentum in the form 

pk $ = div (qtgrad vk)-pkg[ok(T”-~k)+yk(C~-C~)], k = L, S, 1.(4) 

Here, 7, denotes the coefficient of dynamical viscosity and g is the acceler- 
ation of gravity. The balances of momentum for the individual components 
Et, CY = A, B, are not taken into account since they would be combinations of 
the balance written for the mixture and a constitutive relation for the diffusion 
flux which we introduce later. 

Writing the balance of internal energy we employ the results of Atkin and 
Craine (1976a) in the liquid and inter-phase. We neglect the viscous dissipa- 
tion of the energy as most authors do and assuming vs =.O, vz M 0 we write 
the same balance for the solid as well. In addition, we suppose the alloy to 
be diluted so that Ck << 1 and denoting the internal energy density by u we 
finally arrive at 

pk $ + div (qk + qkji) + (C~)-‘(j”, - g) = Gk, k = L, S, I, (5) 
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where q is the heat flux, 7 = hg - hA is the difference of the specific enthalpies 
and @ stands for radiation heat sources. Note that owing to our assumptions 
we have js z 0 in the solid. 

The phenomenological laws of linear (irreversible) thermodynamics yield 
the constitutive relations 

j", = -pkDkgrad (5’: + Mkg + pkskgrad T’, (6) 

PkMk 
q” = -k”grad T” + P’grad Ci - - 

pkDk g9 
k= L,S,I, (7) 

where D is the diffusivity of component B, M is the mobility, 6 the Soret, 
p the Dufour coefficient, and k is the thermal conductivity. We note that the 
mobilities are introduced as 

where p denotes the chemical potential. To provide consistency with our 
previous assumptions we suppose that Ds, MS, Ss M 0 and, moreover, that 
psMs/Ds M 0. 

After substitution for jb and qk from (6-7) we obtain the final set of balance 
equations valid in each of the phases (k = L, S, I). These balance equations 
consist of (l-2), (4), and 

k dC’ - div (pkDkgrad CL) - div (Mkg) 
Pdt- 

- div (pkskgrad Tk), (9) 

k duk 

’ dt 
- = div [(k” - qkpk6”)grad T’] + div [(qkpkDk - ,B’)grad CL] + 

div [M$gdjg] - (C$)-’ [(-pkDkgrad Ck + p”4grad T”) a g] - 

(C;)-‘M”g . g + Qk. (10) 

To complete the model it is necessary to add the Gibbs relation and to 
specify the equations of state. 

The Gibbs relation and equations of state 

Developing the conservation laws and constitutive relations we have not 
paid attention to the phase change process up to now. The particular phases 
can only be distinguished by introducing the equation of state which would be 
subject to the phase diagram and the Gibbs relation. Modelling the process 
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at a macroscopic level, we employ the assumption of local thermodynamic 
equilibrium and suppose the local validity of equilibrium phase diagram. 

Consider an elementary cell P which is small enough to possess nearly 
uniform properties so that it belongs to one of the three continua, EL, ES, E’. 
Assume for simplicity that the liquidus and solidus curves can be written as 
Cg = f”(T), k = L, S, where fk are continuous functions. For definitness we 
suppose that P E EL e CB 5 fL(Z’), P E ES * CB 2 fS(T), and P E E’ 
otherwise. 

Being not a pure phase, E’ is viewed as a mixture of liquid and solid and 
it is treated as a superposition of EL and ES. We apply the “lever rule” and 
introduce the liquid fraction X as 

I 
1 forP E EL, 

X = I$$$$$!$ forP E E’, 

1 
(11) 

I 0 forP E ES 

in accordance with Alexiades, Wilson and Solomon (1985). Then, any 
specific quantity X’ defined in the inter-phase can be written as X’ = XXL + 
(1 - X)X’. Owing to the definition of X this equation holds in EL, ES as well. 

In the liquid or solid the Gibbs relation reads 

du = Tds - C Ai dai, 
i 

(12) 

where Ai are generalized forces (the pressure p and chemical potential -p in 
our case), ai generalized coordinates (the volume V and concentration CB), 
and s is the specific entropy. However, we want to treat the specific internal 
energy as a function of T, V, (2’~ instead, of s, V, CB and we thus transform (12) 
into 

where cv denotes the specific heat under constant volume, using some stan- 
dard thermodynamic relations. 

The next step is to eliminate the derivative (a~/K?‘)v,c~ from (13). To 
achieve this we express the Gibbs specific energies as functions of p, T, C’, 
and apply the second Gibbs-Hehnholtz equation which expresses the specific 
enthalpies i,n terms of these Gibbs potentials. We thus arrive at 

where 7 is the above introduced difference of specific enthalpies. Since we have 
assumed local thermodynamic equilibrium and our equation of state is being 
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established from the equilibrium phase diagram we may put dp = 0 locally. 
Using now a generalized form of the Gibbs-Duhem equation we obtain, after 
some manipulations, the Gibbs relation for the liquid and solid phase in its 
final form 

du” = c; dT - p" dVk + rjk dCB, k = L, S, (15) 

where cP denotes the specific heat under constant pressure. 
In the inter-phase, we apply the lever rule, differentiate, and express du’ as 

combination of duL, duS, dX. Substituting for duL, duS, expressing the specific 
properties by the lever rule and taking the assumption dp = 0 locally into 
account we obtain (k = I) 

du” = c; dT - pk dVk + qk dCB + LM dX’, (16) 

where LM is the latent heat of melting. Since dX = 0 in the liquid or solid the 
relation (16) is valid in each of the phases, k = L, S, I, in fact. Recalling the 
process is isobaric locally we note that V = V(T, CB), X = X(T, CB) so that 
(16) can be given the form 

3X’” k 
duk= k k $+LM~-Pcu V ’ qk+L&- B 

The equation of state in the form u = u(T, CB) could now be obtained by 
the same integration procedure as used by Alexiades, Wilson and Solomon 
(1985). 

The model of solidification 

Combining the balance equation and the Gibbs relation obtained we arrive 
at the following system of equation that the unknown quantities p, v, T and 
C, should satisfy: 

p = ,i$ - CY(T - Z?) - ~(CB - &)I, (18) 

div v = 0, (19) 

p$ = div (qvgrad v) - pg[cr(T - T) + ~(CB - CB], (20) 

dCB 
’ dt 

- = div (@grad CB) - div (Mg) - div (&grad T) , (21) 

ax 
p c,+LM@-p&V 

( > 
dT =div [(k- ~,$)grd T+(v@-P) grad C’s]+ dt 

17+LM,CB 
-E- - mV> [div (pGgd T)+div (Mg)-div (@grad CB)]+ 
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div [&I($- ) ] T,I g - (C&‘(-@grad Cg+Mg+p&rad T).g+@.(22) 

This system of equations is understood to hold in distribution sense in the 
entire domain occupied by the alloy. The material properties jj, CV, y, Q,, D, Ic, 6, 
,B, 1M, LM and the heat sources or sinks are to be determined experimentally. 
Furthermore, the equilibrium phase diagram is supposed to be known so that 
it is possible to express X = X(7’, CB). The initial and boundary conditions 
for equations (18-22) f o 11 ow from the experimental situation modelled. After 
solving the corresponding initial-boundary value problem for p, v, CB, and T, 
the location of the inter-phase can be determined as the subdomain where 
O<X<l. 

COMPUTER SIMULATION WITH SIMPLIFIED MODEL 

A two-dimensional model without convection 

The model of solidification based on the system of equations (18-22) is quite 
complicated and the computing resources we could use had forced us to re- 
strict our study to a considerably simplified version of it. This version is 
based on three additional assumptions: (i) the density of each of the two ba- 
sic phases (S, L) is constant, (ii) the convective velocity of the mixture is zero 
everywhere, (iii) there are no heat sources or sinks. Applying these assump- 
tions to the full version of the model we obtain the following system of partial 
differential equations 

acB 

p at 
- = div (pDgrad C’s) - div (Mg) - div (pSgrad T), (23) 

P $+LM@ ( OA) aT = div [(k - qpb)grad T+ (7pD - @grad CB]+ dt 

77 + LM&) [div (@grad 7’) + div (Mg) - div (@grad CB)] + 

div L”($- > 3 7 g - (CA)-‘(-@grad CB + Mg + @grad 2’) . g. (24) 

We simulated the solidification process of a two-dimensional sample of the 
pseudo-binary mercury-cadmium-telluride alloy (HgTe)i_;(CdTe),, for which 
the phase diagram (Fig. 1) is known with confidence and many of its ther- 
mophysical properties have been measured. We used the temperature and 
concentration dependent data presented by Alexiades, Geist and Solomon 
(1985). The numerical method employed was standard semi-Gale&in finite- 
element procedure with linear isoparametric quadrilateral elements in space. 
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The resulting system of ordinary differential equations was then discretized 

by an explicit method using linear finite elements in time (Zienkiewicz, 1971). 

soo- 
0.00 0.20 0.40 0.60 0.80 1.00 

d-1 

0.006 

0.000 1 I I I I 1 

0.000 0.00: 

x(m) 

Fig. 1. Equilibrium phase diagram of the alloy. 

Fig. 2. The finite-element mesh. 

Our numerical experiments were performed on a rectangular domain R = 

[0,0.003] x [O,O.OOS] m. The finite element mesh used in the calculations is 
shown in Figure 2. A Dirichlet boundary condition was prescribed for the tem- 

perature at y = 0, whereas the remaining sides of the sample were supposed 

to be heat insulated. Zero mass flux condition was the condition for concen- 

tration on the whole boundary of the rectangle. Our initial and boundary 

conditions implied that the whole sample consisted of the liquid phase only at 

t = 0. The gravitational field was supposed to act in the reversed direction of 

the y-axis. For t > 0, the sample starts to solidify from the lower end upwards 

due to the boundary conditions prescribed for y = 0. The solidification pro- 

ceeds faster at the 2 = 0 end, where the temperature is lowest. The starting 

finite-element mesh deforms in the course of time, reflecting the changes in 

the domains occupied by the individual phases. 
The purpose of the computational experiments performed was to study the 

time development of the temperature and concentration fields under various 

gravity conditions. In addition, we studied the influence of certain material 

parameters on the solidification process. A more detailed description of the 
results obtained will be published elsewhere. Here, we present some of the 
results for illustrative purposes only. 



25 

Results of computational experiments 

Figure 3 shows the history of the solidification process at the cross section 
J: = 1.2 x 10S3 m under terrestrial conditions. The development of the domains 
occupied by the particular phases can be seen in the figure. At the beginning 
of the process (up to t = 5 s approximately) the mushy-zone is very narrow 
(about l/100 of the sample height). Then, it becomes still wider and wider, 
and at t = 450 s it occupies 2/3 of the sample and the liquid phase vanishes. 
Further, the solidification proceeds rather slowly so that the entire sample is 
solid only at t = 11050 s. 

0.006 

0.000 

-7 
0 3000 6000 9000 12000 

t(s) 

Fig. 3. History of the solidification process. 

Figure 4 contains the compositon profile along the above cross section at 
t = 5.15 s. The profile exhibits marked peaks at the values of y corresponding 
to the phase boundaries. There are almost no changes in concentration in the 
liquid phase which forms some 90% of the sample at that time. Later, the 
function Cn(y) becomes smooth and at t = 1900s the composition profile is 
almost constant. Both the corresponding temperature profiles are in Figure 5. 
The profiles exhibit distinct jumps in the temperature gradients at the phase 
boundaries, quite in accordance with the underlying theory. 

Studying the influence of a dynamic gravitational fields in the solidifica- 
tion of our sample we considered two cases. First, we used a field which was 
continuous in space and time, second, we considered discrete local changes of 
gravity. The results obtained for various values of g = Igl were compared with 
those obtained for g = go = 9.81 ms -2. The results of our calculations have 



26 

shown that it would be necessary to take g = 108go to change the reference 
concentration and temperature fields by 0.1%. This confirms the theoretical 
studies of the stability of the phase interface under microgravity conditions 
performed by Prikryl and Vodik (1984), which have indicated that the in- 
fluence of different gravity conditions on the diffusion of solute itself cannot 
account for changes in the structure of the solidifying material. 

Studying the influence of thermophysical parameters we concentrated on 
those which are usually determined inaccurately (.DL, ci) or on those param- 
eters that are even not measured at all and their influence is mostly neglected 
(ML, q, @). Our numerical experiments revealed that the accuracy in ML and 
q is not critical, the effect of these two material properties being of second 
order apparently. On the other hand, changing DL or ci by 50% resulted 
to up 7% changes of the respective concentration or temperature field in a 
rather short 5s interval of time. In addition, the rate of solidification exhib- 
ited marked changes: having increased DL ten times we observed the phase 
interfaces to move 4 to 6 times faster. 

0.200 

7 0.100 
‘i; 

0.000 

r 

0.000 0.002 0.004 0.006 

r(m) 

0.000 0.002 0.004 0.006 

Fig. 4. Composition profile. 

Fig. 5. Temperature profiles. 

The accurate determination of the Soret coefficient SL has proved to be of 
importance in our experiments. Putting SL = 5 x 10-‘2m2s-1K-1, i.e. bL = 
10W3DL, instead of SL = 0, we observed up to 30% changes in concentration 
and 5% changes in temperature at t = 5s. In this short time interval the 
average velocity of the solid/mushy-zone interface was almost twice so large 
as with zero Soret, whereas the average velocity of the liquid/mushy-zone 
interface was even 3.5 times so large. 
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Finally, we studied the effect of the concentration and temperature depen- 

dency of the material parameters on the results, comparing the values obtained 

for the case where the material parameters are concentration and temperature 

dependent and for the case where they are constant. For the respective con- 

stant values we took those corresponding to the solid/mushy-zone interface 

in the solid phase and those corresponding to the liquid/mushy-zone phase 

boundary in the liquid. Again, at t = 5 s we observed distinct changes in con- 

centration (up to 5%) and in the liquid temperature (about 10%). Moreover, 

about 20% changes in the rate of solidification were seen. 

CONCLUSIONS 

The results of the experiments with solidification in space imply that the 

effect of gravity conditions should be included into the theoretical and com- 

putational models of solidification processes. The model presented in this 

paper enhances the well-known model constructed by Alexiades, Wilson and 

Solomon (1985) by introducing convective heat and mass transport as well as 

taking the forced diffusion due to gravitational forces into account. 

The results of numerical experiments performed with a simplified version 

of the model have shown that changes in convective mechanisms play the 

important role in space experiments, whereas the influence of gravity on the 

chemical diffusion is a second-order effect. Hence, to be able to simulate space 

experiments adequately it is necessary to employ the full version of the model 

despite of its theoretical and practical complexity. This will be the subject of 

our further research. 

However, even the numerical experiments with the simplified version have 

shown that the inadequate accuracy of material parameters may bias the 

results of computer simulation to such an extent that our effort to model the 

influence of the gravitational fields and its possible dynamic changes could not 

be successful. The results of the computations have shown that the simulation 

can be seriously biased not only by insufficient accuracy in determining the 

“primary” material properties (k, cP, or D) but that also the Soret coefficient 

SL can have marked influence on the results obtained. The usual neglection 

of thermodiffusion in models of this type is thus questionable. 

Another important aspect of our experiments consisted in the use of tem- 

perature and concentration dependent material properties, This has shown to 

be quite important and our computations have revealed that neglecting this 

dependency may lead to serious errors. 
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